# Thermo-Est

# Régulateur N1040

RÉGULATEUR UNIVERSEL - MODE D'EMPLOI - V2.2x B

# 1. AVERTISSEMENTS DE SÉCURITE

Les symboles ci-dessous sont utilisés sur l'appareil et tout au long de ce manuel pour attirer l'attention de l'utilisateur sur des informations importantes concernant la sécurité en général et l'utilisation.



Toutes les recommandations de sécurité apparaissant dans ce manuel doivent être respectés pour garantir la sécurité du personnel et éviter d'endommager cet instrument ou le système. Si l'appareil est utilisé différemment, ses protections de sécurité peuvent ne pas être efficaces.

# 2. INSTALLATION / RACCORDEMENTS

Le régulateur doit être fixé sur un panneau, en suivant la séquence d'étapes ci-dessous :

- Faites une découpe sur le panneau conformément aux <u>SPECIFICATIONS</u>;
- Retirez l'attache de fixation du régulateur ;
- Insérez le régulateur dans la découpe par l'avant du panneau ;
- Remettez l'attache sur le régulateur par l'arrière en l'appuyant jusqu'à ce que ce qu'il soit ferment fixé.

# 2.1 RACCORDEMENTS ÉLECTRIQUES

La disposition des recours dans le panneau arrière de régulateur est présentée dans la **Figure 1** :



Figure 1 – Raccordements électriques



#### 2.2 RECOMANDATIONS POUR L'INSTALLATION

- Les conducteurs du signal d'entrée doivent traverser l'installation du système séparément des conducteurs de sortie et d'alimentation, si possible sur des conduits mis à la terre.
- L'alimentation des instruments doit provenir d'un réseau d'instrumentation approprié.
- Il est recommandé d'utiliser des FILTRES RC (antiparasite) sur les bobines de contacteurs, les solénoïdes etc.
- Pour les applications de régulation, il est essentiel de considérer ce qui peut arriver en cas de défaillance d'une partie quelconque du système. Les dispositifs internes du régulateur peuvent ne pas suffire à garantir une protection totale.

## 3. RESSOURCES

#### 3.1 ENTRÉE DE SIGNAL (INPUT)

Le type d'entrées du régulateur est défini lors de sa configuration. Le **Tableau 1** présente les options d'entrée disponibles pour l'utilisateur :

| TYPE           | CODE | PLAGE DE MESURE                           |
|----------------|------|-------------------------------------------|
| Thermocouple J | Łc J | Plage : -110 à 950 °C (-166 à 1 742 °F)   |
| Thermocouple K | Ec P | Plage : -150 à 1 370 °C (-238 à 2 498 °F) |
| Thermocouple T | tc t | Plage : -160 à 400 °C (-256 à 7 52 °F)    |
| Pt100          | PĿ   | Plage : -200 à 850 °C (-328 à 1 562 °F)   |

**Tableau 1** – Types d'entrées

#### 3.2 SORTIES

Le régulateur possède deux, trois ou quatre canaux de sortie, selon le modèle demandé. Ces derniers doivent être configurés par l'utilisateur pour fonctionner comme sortie de régulation, sortie d'alarme 1, 2 ou 1 et 2 et encore exécuter la fonction LBD (décrite plus bas dans ce manuel).

| Sortie <b>Out1</b> | Sortie de type impulsion de tension électrique,<br>5 Vcc / 50 mA max.<br>Disponible sur les bornes 4 et 5 du régulateur. |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------|--|
| Sortie <b>Out2</b> | Relais SPST-NO.<br>Disponible sur les bornes 6 et 7 du régulateur.                                                       |  |
| SORTIE <b>OUT3</b> | Relais SPST-NO.<br>Disponible sur les bornes 13 et 14 du régulateur (Modèle PRRR).                                       |  |
|                    | Sortie Analogique ou Sortie Courant. 0-20 / 4-<br>20 mA, 500 R max.                                                      |  |
|                    | Disponible sur les bornes 13 et 14 du régulateur (Modèle PRAR).                                                          |  |
| SORTIE <b>OUT4</b> | Relais SPDT.<br>Disponible sur les bornes 10, 11 et 12 du régulateur.                                                    |  |

#### 3.3 SORTIE DE REGULATION

C'est la sortie qui va commander l'actionneur de processus (Résistance de chauffage, compresseur de réfrigération, etc.). La sortie de régulation peut être acheminée vers un relais, une sortie analogique ou même une sortie de type Impulsion de Tension Électrique, selon la disponibilité.

#### 3.4 SORTIE ANALOGIQUE OU SORTIE COURANT

Le régulateur a une version avec sortie analogique de courant électrique (modèle PRAR), qui peut remplir les fonctions suivantes :

- Sortie de contrôle de processus ;
- Sortie de retransmission PV de processus ;
- Sortie de retransmission SP du processus.

En tant que sortie de régulation, elle relie la plage de variation MV (0 à 100 %) à la plage de variation de courant : 4 à 20 mA ou 0 à 20 mA.

- 0 % de MV détermine 4 mA (ou 0 mA) sur la sortie analogique ;
- 100 % de MV détermine 20 mA dans la sortie analogique.

En tant que sortie de retransmission PV/SP du processus, le courant électrique appliqué à la sortie analogique sera proportionnel au rapport entre la valeur de la variable (PV ou SP) et la plage de retransmission définie par les paramètres **rLL** et **rLhL**.

La sortie analogique est isolée électriquement des autres circuits du régulateur. Elle a une précision de mesure de 0,25 % de la plage de fonctionnement ou 0,4 mA.

#### 3.5 SORTIE D'ALARME

Le régulateur dispose de deux alarmes qui peuvent être dirigées vers une sortie quelconque du régulateur. Ces alarmes peuvent être configurées pour réaliser les différentes fonctions décrites sur le **Tableau 02**:

| oFF   | Alarme éteinte.                                                                                                                                                                                                   |                                                                              |  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|
| Lo    | Alarme de valeur minimum<br>absolue. Elle se déclenche<br>lorsque la VP (variable de<br>processus – température) est<br><b>inférieure</b> à la valeur définie<br>par la consigne (SP)<br>d'alarme (SPA1 ou SPA2). |                                                                              |  |
| ні    | Alarme de valeur maximu<br>absolue. Elle se déclenci<br>lorsque la valeur de la VP e<br>supérieure à la vale<br>définie comme SP d'alarme                                                                         | PV SPA1                                                                      |  |
|       | Alarme différentielle. Ici, le<br>« <b>SPR2</b> » représentent des<br>la VP et la consigne de rég                                                                                                                 | s paramètres « <b>5PR 1</b> » et<br>s écarts (différences) entre<br>ulation. |  |
| d IF  | SP - SPA1 SP SP + SPA1                                                                                                                                                                                            | SV + SPA1 SP SV - SPA1                                                       |  |
|       | SPA1 positif SPA1 négati                                                                                                                                                                                          |                                                                              |  |
|       | Alarme différentielle mini<br>lorsque la VP est <b>inférieu</b><br>SPA1 (alarme 1 sert ici d'e                                                                                                                    | mum. Elle se déclenche<br>re au point défini par SP +<br>kemple).            |  |
| d IFL | SP – SPA1 SP                                                                                                                                                                                                      | SP SP SPA1                                                                   |  |
|       | SPA1 positif                                                                                                                                                                                                      | SPA1 négatif                                                                 |  |
| d IFH | Alarme différentielle maxi<br>lorsque la valeur de VP est<br>par SP + SPA1 (alarme 1 s                                                                                                                            | mum. Elle se déclenche<br>supérieure au point défini<br>ert ici d'exemple) : |  |



Note : ces figures sont également valables pour l'alarme 2 (SP.A2).

**Remarque importante** : les alarmes configurées sur les fonctions **H I**, **d IF** et **d IFH** déclenchent aussi leurs sorties associées lorsqu'une défaillance du capteur est identifiée et signalée par le régulateur. Par exemple, une sortie type relais, configurée pour fonctionner comme une alarme maximale (**H I**), se déclenche lorsque la valeur de SPAL est dépassée et aussi lorsque le capteur branché à l'entrée du régulateur se rompt.

#### 3.6 VERROUILLAGE INITIAL D'ALARME

L'option de **Verrouillage Initial** désactive le déclenchement d'une alarme lorsqu'il y a condition d'alarme du processus pendant que le régulateur se met en marche. L'alarme n'est activée que quand le process est passé par une condition de non-alarme.

Le verrouillage initial est utile, par exemple, lorsqu'une des alarmes est configurée comme alarme de valeur minimum et peut se déclencher lors du démarrage du process, ce qui est généralement indésirable.

Le verrouillage initial n'est pas valable pour la fonction **IErr** (rupture de capteur).

#### 3.7 FONCTION SORTIE SÛRE EN CAS DE DÉFAILLANCE DU CAPTEUR

Cette fonction met la sortie de régulation en condition sûre pour le processus quand une défaillance est identifiée à l'entrée du capteur.

En cas de rupture du capteur, le régulateur adopte, pour la sortie de régulation, la valeur en pourcentage définie pour *IE.ou*. Il maintient cette condition jusqu'à ce que le problème soit résolu. En mode tout ou rien, les valeurs pour *IE.ou* sont 0 et 100 %. Le mode PID accepte toutes les valeurs entre 0 et 100 %.

# 3.8 FONCTION LBD (LOOP BREAK DETECTION)

Le paramètre **Ibd.t** permet de définir un intervalle de temps maximum (en minutes) pour que la température process (VP) réagisse à la commande de la sortie de régulation. Si la VP ne réagit pas de manière adéquate pendant cet intervalle, le régulateur affiche l'occurrence d'un événement LBD, indiquant des problèmes de la boucle (*loop*) de régulation.

Tout évènement LBD peut également être dirigé vers un des canaux de sortie du régulateur. Pour ce faire, il suffit de configurer le canal de sortie désiré sur la fonction **Ldb** pour qu'elle se déclenche dans ces conditions.

Réglez cette fonction sur 0 (zéro) pour la désactiver.

Cette fonction permet à l'utilisateur de détecter des problèmes d'installation, comme par exemple, un actionneur défectueux, une panne d'alimentation, etc.

#### 3.9 OFFSET

Fonction qui vous permet de faire un petit ajustement à la valeur de température indiquée par le régulateur. Il permet de corriger les écarts de mesure qui apparaissent, par exemple, lors du remplacement du capteur de température.

#### 3.10 INTERFACE USB

L'interface USB est utilisée lors de la CONFIGURATION, la SURVEILLANCE ou de la MISE À JOUR du régulateur. Pour ce faire, le logiciel **QuickTune** doit être utilisé. Il offre des fonctionnalités permettant de créer, visualiser, sauvegarder et ouvrir les paramètres à partir de l'appareil ou des fichiers qui se trouvent dans votre ordinateur. La fonctionnalité de sauvegarder et d'ouvrir des paramètres dans les fichiers rend possible des transferts entre les appareils et aussi de réaliser de copies de sauvegarde.

Pour des modèles spécifiques, le **QuickTune** permet la mise à jour du micrologiciel du régulateur à l'aide de l'interface USB.

Pour la SURVEILLANCE, il est possible d'utiliser tout logiciel de surveillance (SCADA) ou de laboratoire fournissant un support à la communication MODBUS RTU, sur un port de communication série. Lorsqu'il est connecté au port USB d'un ordinateur, le régulateur est reconnu comme un port sériel conventionnel (COM x).

Utilisez le logiciel **QuickTune** ou consultez le GESTIONNAIRE DE PÉRIPHÉRIQUES sur le TABLEAU DE BORD Windows pour identifier le port COM affecté au régulateur.

Pour réaliser la SURVEILLANCE, consultez le mappage de la mémoire MODBUS dans le manuel de communication du régulateur et la documentation de votre logiciel de surveillance.

Suivez les étapes ci-dessous pour utiliser la communication USB de l'appareil :

- Téléchargez le logiciel gratuit QuickTune sur notre site Web et installez-le sur votre ordinateur. Avec le logiciel, seront également installés les pilotes USB nécessaires à la mise en communication.
- 2. Connectez l'appareil à l'ordinateur avec le câble USB. Le régulateur ne requiert pas d'alimentation, le port USB lui fournira l'alimentation suffisante à la mise en communication (d'autres fonctions de l'appareil peuvent éventuellement ne pas fonctionner).
- 3. Ouvrez le logiciel QuickTune, configurez la communication et démarrez la reconnaissance de l'appareil.

L'interface USB N'EST PAS ISOLÉE de l'entrée de signal (INPUT) et des entrées et sorties numériques du régulateur. Son but est de permettre une utilisation temporaire lors de la CONFIGURATION et des périodes de SURVEILLANCE.

Pour la sécurité des personnes et des équipements, elle ne devra être utilisée que lorsque l'appareil est complètement déconnecté des signaux d'entrée/sortie.

L'utilisation de l'interface USB en toute autre circonstance est possible, mais il exige une analyse minutieuse de la part du responsable de sa mise en place.

Lors de la SURVEILLANCE pendant de longues périodes et avec entrées et sorties connectées, nous recommandons d'utiliser l'interface RS485.

# 4. FONCTIONNEMENT

Le panneau frontal de régulateur et ses parties sont présentés dans la Figure 2 :



Figure 2 – Identification des parties du panneau frontal

Afficheur : il montre la variable mesurée, les symboles des paramètres de configuration et leurs valeurs/conditions respectives.

Indicateur COM : il clignote pour indiquer l'activité de communication dans l'interface RS485.

Indicateur TUNE : il s'allume lorsque le régulateur est en cours de réglage.

**Indicateur OUT** : il signale l'état instantané de la (des) sortie(s) de régulation.

Indicateurs A1 et A2 : ils signalisent l'occurrence d'une condition d'alarme.

**Touche P** : elle fait défiler les différents paramètres et les niveaux de paramètres.

**Touche d'augmentation et touche de diminution** : elles permettent de modifier les valeurs des paramètres.

**Touche** : elle permet de revenir aux paramètres en arrière pendant la configuration.

#### 4.1 DÉMARRAGE

Lorsqu'il est mis sous tension, le régulateur affiche le numéro de la version de son logiciel pendant trois secondes, puis la valeur de la Variable de Processus (VP) mesurée (température). L'afficheur inférieur, ou écran d'affichage, montre la valeur de la consigne. C'est l'écran d'indication.

Le régulateur doit être configuré avant d'être mis en service. La configuration consiste à configurer chacun de ses différents paramètres. L'usager doit comprendre leur importance et définir une condition ou valeur valable pour chacun d'entre eux.

Les paramètres de configuration sont réunis dans des groupes appelés niveaux de paramètres. Les 5 niveaux de paramètres sont :

La touche P donne accès à ces niveaux et à leurs paramètres :

Il suffit de la maintenir appuyée pour que, toutes les deux secondes, le régulateur passe d'un niveau à l'autre, présentant le premier paramètre de chacun :

PV >> ALun >> FuA 1 >> LYPE >> PASS >> VP ...

Pour avoir accès au cycle souhaité, il suffit de relâcher la touche  $\mathbf{P}$  lorsque son premier paramètre s'affiche. Pour faire défiler les paramètres de ce niveau, appuyez rapidement sur la touche  $\mathbf{P}$ . Pour revenir en arrière, utilisez la touche  $\mathbf{\P}$ .

Le symbole de chaque paramètre s'affiche sur l'afficheur supérieur et sa valeur ou condition sur l'afficheur inférieur.

Selon la fonction de Protection de Configuration adoptée, le champ **PR55** s'affiche en premier sur le cycle où commence la protection. Voir le chapitre PROTECTION DE CONFIGURATION.

# 5. DESCRIPTIONS DES PARAMÈTRES

# 5.1 CYCLE DE FONCTIONNEMENT

| VP + SP                         | Écran d'indication de la VP. L'afficheur supérieur<br>(rouge) affiche la valeur de la variable de température<br>mesurée (VP). L'afficheur inférieur (vert) affiche la<br>consigne (SP) de régulation.                                                                                                                                             |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SPA 1<br>SPA2<br>Setpoint Alarm | SP d'alarme. valeur définissant le point de déclenchement des sorties d'alarme. Pour les alarmes <b>différentielles</b> , ces paramètres définissent les écarts. Ils ne sont pas utilisés pour la fonction d'alarme <i>IErr</i> . Ils ne s'affichent sur ce niveau que quand ils ont été activés par les paramètres <b>SP LE</b> et <b>SP2.E</b> . |

# 5.2 CYCLE DE RÉGLAGE

| ALUN<br>Auto-tuning               | AUTO-TUNE : active le réglage automatique des paramètres PID ( <b>Pb, 1r, dt</b> ).                                                                                                                           |  |  |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                   | <b>DFF</b> Réglage automatique désactivé ;                                                                                                                                                                    |  |  |
|                                   | FR5L Réglage en mode rapide ;                                                                                                                                                                                 |  |  |
|                                   | FULL Réglage en mode précis.                                                                                                                                                                                  |  |  |
|                                   | Consultez le chapitre <u>DEFINITION DES</u><br><u>PARAMETRES PID</u> de ce manuel.                                                                                                                            |  |  |
| <b>РЬ</b><br>Proportional<br>Band | Bande proportionnelle : correspond à la lettre <b>P</b> du mode de régulation PID. Valeur en pourcentage de la plage supérieure du type d'entrée, Réglage de 0 à 500 %.                                       |  |  |
|                                   | Quand PB = 0 (zéro), la régulation est en mode tout<br>ou rien.                                                                                                                                               |  |  |
| <b>ا</b><br>Integral Rate         | Taux d'intégration : correspond à la lettre I du mode de régulation P.I.D.                                                                                                                                    |  |  |
|                                   | Valeur en répétitions par minute (Reset), réglage entre 0 et 99,99.                                                                                                                                           |  |  |
|                                   | Affiché seulement si <b>PB</b> $\neq$ 0.                                                                                                                                                                      |  |  |
| <b>dĿ</b><br>Derivative<br>Time   | Temps dérivé : correspond à la lettre <b>D</b> du mode de<br>régulation PID.<br>Valeur en secondes, réglage entre 0 et 250.0<br>secondes.<br>Affiché seulement si <b>PB</b> ≠ 0.                              |  |  |
| <b>EE</b><br>Cycle Time           | Temps du cycle MLI : valeur en secondes du temps de<br>cycle MLI de la régulation PID.<br>Réglage entre 0,5 et 100 secondes.<br>Affiché seulement si <b>PB</b> ≠ 0.                                           |  |  |
| H <b>JSE</b><br>Hysteresis        | Hystérésis de régulation : valeur de l'hystérésis pour<br>une régulation tout ou rien.<br>Réglage entre <b>0</b> et l'étendue de la plage de mesure du<br>type d'entrée sélectionné.                          |  |  |
| ACF                               | Logique de régulation :                                                                                                                                                                                       |  |  |
| Action                            | FE Action Inverse. Pour le chauffage. Il active la sortie de régulation lorsque la VP est inférieure à la consigne.                                                                                           |  |  |
|                                   | d Ir Action directe. Pour la réfrigération. Il active la sortie de régulation lorsque la VP est supérieure à la consigne.                                                                                     |  |  |
| Soft Start                        | Démarrage progressif : intervalle de temps, en secondes, pendant lequel le régulateur limite la vitesse d'accroissement de la MV (sortie de régulation). Sur zéro (0), le démarrage progressif est désactivé. |  |  |

|        | Mode de fo<br>OUT2, OU                                                                                                       | onctionnement des canaux de sorties OUT1,<br>T3 et OUT4 :                   |
|--------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
|        | ٥FF                                                                                                                          | non utilisée ;                                                              |
| 0023   | [trL                                                                                                                         | sortie de régulation ;                                                      |
| Output | R I                                                                                                                          | sortie d'alarme 1 ;                                                         |
|        | 82                                                                                                                           | sortie d'alarme 2 ;                                                         |
|        | R IR2                                                                                                                        | sortie d'alarmes 1 et 2, à la fois ;                                        |
|        | LЬd                                                                                                                          | sortie pour fonction LBD.                                                   |
| Output | Dans les modèles de régulateur avec la fonction de sortie analogique, les options de configuration OUT3 sont les suivantes : |                                                                             |
|        | ۵FF                                                                                                                          | Sortie non utilisée ;                                                       |
|        | c.0.20                                                                                                                       | Sortie de régulation 0 à 20 mA ;                                            |
|        | c.4.20                                                                                                                       | Sortie de régulation 4 à 20 mA ;                                            |
|        | P.0.20                                                                                                                       | Retransmission dans 0 à 20 mA de la valeur de la température mesurée (VP) ; |
|        | P.4.20                                                                                                                       | Retransmission dans 4 à 20 mA de la valeur de la température mesurée (VP) ; |
|        | 5.0.20                                                                                                                       | Retransmission en 0 à 20 mA de la valeur de Setpoint définie (SP) ;         |
|        | 5.4.20                                                                                                                       | Retransmission en 4 à 20 mA de la valeur de Setpoint définie (SP).          |

# 5.3 CYCLE D'ALARMES

| FuR I<br>FuR2                        | Fonction<br><b>Tableau</b>                                                                                                                                                                                                      | s d'alarme définies parmi les options du<br><b>2</b> .                                           |  |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|
| SPA I<br>SPA2<br>Setpoint Alarm      | SP d'alarme : valeur définissant le point de déclenchement des sorties d'alarme. Pour les alarmes <b>différentielles</b> , ces paramètres définissent les écarts. Ce paramètre n'est pas utilisé pour la fonction <b>lErr</b> . |                                                                                                  |  |
| SP IE<br>SP2E<br>Setpoint            | SP autorisé : permet d'afficher les paramètres SPA1 et SPA2 également sur le niveau fonctionnement du régulateur.                                                                                                               |                                                                                                  |  |
| Enable                               | YE5                                                                                                                                                                                                                             | Affiche les paramètres SPA1/SPA2 sur le niveau fonctionnement.                                   |  |
|                                      | no                                                                                                                                                                                                                              | N'affiche pas les paramètres SPA1/SPA2 sur le niveau fonctionnement.                             |  |
| BLA I                                | Verrouillage initial d'alarmes.                                                                                                                                                                                                 |                                                                                                  |  |
| PT45                                 | YE5                                                                                                                                                                                                                             | Active verrouillage initial.                                                                     |  |
| Blocking Alarm                       | no                                                                                                                                                                                                                              | Désactive verrouillage initial.                                                                  |  |
| HYR I<br>HYR2<br>Hysteresis<br>Alarm | Hystérés<br>où l'alarr                                                                                                                                                                                                          | sis d'alarme. Il définit la différence entre la VP<br>ne se déclenche et celle où elle s'arrête. |  |
| FLSh<br><sub>Flash</sub>             | Il signale l'occurrence de conditions d'alarme en faisant clignoter l'indication de VP sur l'écran d'affichage.                                                                                                                 |                                                                                                  |  |
|                                      | YE5                                                                                                                                                                                                                             | Active la signalisation d'alarme faisant<br>clignoter la VP à l'écran.                           |  |
|                                      | no                                                                                                                                                                                                                              | Désactive la signalisation d'alarme à l'écran.                                                   |  |

#### 5.4 CYCLE D'ENTRÉE

| ESPE<br>Type                    | Type d'entrée : Sélection du type d'entrée utilisé par le régulateur. Consulter le <b>Tableau 1</b> . |                                                                                                                                                                                             |  |
|---------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                 | (J) <b>Ec</b>                                                                                         | 」 -110 à 950 °C / -166 à 1742 °F                                                                                                                                                            |  |
|                                 | (K) <b>Ec</b>                                                                                         | ₽ -150 à 1370 °C / -238 à 2498 °F                                                                                                                                                           |  |
|                                 | (T) <b>Ec</b>                                                                                         | <b>L</b> -160 à 400 °C / -256 à 752 °F                                                                                                                                                      |  |
|                                 | (Pt100) <b>P</b>                                                                                      | -200 à 850 °C / -328 à 1562 °F                                                                                                                                                              |  |
| FLEr<br>Filter                  | Filtre numérique<br>stabilité du signa<br>Zéro (0) signifie<br>maximum. Plus<br>réponse de la va      | e d'entrée : utilisé pour améliorer la<br>Il mesuré (VP). Réglage entre 0 et 20.<br>filtre débranché, 20 signifie filtre sur<br>cette valeur est élevée, plus la<br>leur mesurée est lente. |  |
| <b>dP.Po</b><br>Decimal Point   | II définit l'afficha                                                                                  | ge de la décimale.                                                                                                                                                                          |  |
| unit                            | Il définit l'unité de                                                                                 | e température à utiliser :                                                                                                                                                                  |  |
| Unit                            | <b>C</b> Celsius                                                                                      | i.                                                                                                                                                                                          |  |
|                                 | F Fahren                                                                                              | heit.                                                                                                                                                                                       |  |
| OFF5<br>Offset                  | Paramètre perm<br>affichée.                                                                           | ettant à l'utilisateur de corriger la VP                                                                                                                                                    |  |
| <b>SPLL</b><br>SP Low Limit     | Il définit la limite                                                                                  | inférieure de réglage de la consigne.                                                                                                                                                       |  |
| SPHL<br>SP High Limit           | Il définit la limite                                                                                  | supérieure de réglage de la consigne.                                                                                                                                                       |  |
| rŁ.LL                           | Permet de défir                                                                                       | ir la limite inférieure de la plage de                                                                                                                                                      |  |
| Retransmission                  | retransmission S                                                                                      | P ou VP sur OUT3.                                                                                                                                                                           |  |
| LOW LIMIT                       | d'une des fonc<br>pour la Sortie Ar                                                                   | te uniquement lors de la selection<br>tions de Retransmission disponibles<br>alogique.                                                                                                      |  |
| rE.HL<br>Retransmission         | Permet de défin<br>retransmission S                                                                   | ir la limite supérieure de la plage de<br>P ou VP sur OUT3.                                                                                                                                 |  |
| High Limit                      | Paramètre affic<br>d'une des fonc<br>pour la Sortie Ar                                                | né uniquement lors de la sélection<br>tions de Retransmission disponibles<br>alogique.                                                                                                      |  |
| Lbd£                            | Intervalle de ten                                                                                     | nps de la fonction LBD : intervalle de                                                                                                                                                      |  |
| Loop Break<br>Detection<br>time | temps maximum<br>aux signaux de l                                                                     | (en minutes) pour la réaction de VP<br>a sortie de régulation.                                                                                                                              |  |
| lE.ou                           | Valeur en pourc<br>de défaillance or<br>régulateur.                                                   | entage à appliquer à la sortie en cas<br>lu capteur branchée sur l'entrée du                                                                                                                |  |
| bRud                            | Vitesse de trans                                                                                      | mission la communication série. Les                                                                                                                                                         |  |
| Baud Rate                       | vitesses suivante                                                                                     | es sont disponibles, en kbps :                                                                                                                                                              |  |
|                                 | 1.2, 2.4, 4.8, 9.6                                                                                    | 19.2, 38.4, 57.6 et 115.2.                                                                                                                                                                  |  |
|                                 | communication s                                                                                       | érie.                                                                                                                                                                                       |  |
| Prty                            | Parité de commu                                                                                       | inication série                                                                                                                                                                             |  |
| Parity                          | nonE Pas                                                                                              | de parité ;                                                                                                                                                                                 |  |
|                                 | ELEn Parit                                                                                            | é ;                                                                                                                                                                                         |  |
|                                 | <b>odd</b> Parit                                                                                      | é impaire.                                                                                                                                                                                  |  |
|                                 | Ce paramètre n'<br>communication s                                                                    | est affiché que dans les modèles avec<br>érie                                                                                                                                               |  |
| <b>Addr</b><br>Address          | Adresse de co<br>régulateur dans<br>entre 1 et 247.                                                   | mmunication : numéro identifiant le<br>le réseau de communication série,                                                                                                                    |  |
|                                 | Ce paramètre r<br>avec communica                                                                      | l'est affiché que dans les modèles<br>tion série.                                                                                                                                           |  |

# 5.5 CYCLE D'ÉTALONNAGE

Tous les types d'entrée sont étalonnés d'usine. Seul un professionnel spécialisé pourra les réétalonner, si besoin en est.

Si vous êtes arrivé sur ce niveau par accident, faites défiler tous les paramètres sans modifier leurs valeurs.

| PRSS<br>Password                                     | Password. Saisie du mot de passe. Cet écran s'affiche avant les cycles protégés. Voir chapitre <u>PROTECTION</u><br><u>DE CONFIGURATION</u> .                                                                                                       |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>EALB</b><br>Calibration                           | Calibration. Il permet d'étalonner le régulateur.<br>Lorsque l'étalonnage est désactivé, les paramètres<br>concernant l'étalonnage sont occultés.                                                                                                   |
| Input Low<br>Calibration                             | Input Low Calibration. Saisie de la valeur inférieure d'étalonnage de la plage appliquée à l'entrée analogique.                                                                                                                                     |
| Input High<br>Calibration                            | Input High Calibration. Saisie de la valeur supérieure d'étalonnage de la plage appliquée à l'entrée analogique.                                                                                                                                    |
| RoLC<br>Analog Output<br>Low Calibration             | Analog Output Low Calibration. Étalonnage utilisateur<br>de la Sortie Analogique (AO). Déclaration de la valeur<br>de courant électrique présent dans la sortie<br>analogique. Réglages du point inférieur.<br>Voir le chapitre <u>ENTRETIEN</u> .  |
| <b>Ro,HC</b><br>Analog Output<br>High<br>Calibration | Analog Output High Calibration. Étalonnage utilisateur<br>de la Sortie Analogique (AO). Déclaration de la valeur<br>de courant électrique présent dans la sortie<br>analogique. Réglages du point supérieur.<br>Voir le chapitre <u>ENTRETIEN</u> . |
| <b>r5£r</b><br>Restore                               | Restore. Il rétablit les étalonnages d'entrée d'usine, en effaçant toutes les modifications faites par l'utilisateur.                                                                                                                               |
| <b>C</b> J<br>Cold Junction                          | Cold Junction. Température de soudure froide du régulateur.                                                                                                                                                                                         |
| <b>PRS.C</b><br>Password<br>Change                   | Password Change. Il permet de définir un nouveau mot de passe, toujours différent de zéro.                                                                                                                                                          |
| Protection                                           | Protection. Il établit le Niveau de protection. Voir le Tableau 3.                                                                                                                                                                                  |

# 6. PROTECTION DE CONFIGURATION

Le régulateur permet de protéger la configuration de l'utilisateur pour éviter tout changement accidentel ou non de ces valeurs. Sur le cycle d'étalonnage, le paramètre **Protection** (**Prot**) définit la protection à adopter selon le ou les cycle(s) au(x)quel(s) l'on veut limiter l'accès.

| NIVEAU DE<br>PROTECTION | CYCLES PROTÉGÉS                                                          |  |
|-------------------------|--------------------------------------------------------------------------|--|
| 1                       | Ne protège que le cycle d'Étalonnage.                                    |  |
| 2                       | Protège les cycles d'Entrée et Étalonnage.                               |  |
| 3                       | Protège les cycles d'Alarme, Entrée et<br>Étalonnage.                    |  |
| 4                       | Protège les cycles de Réglage, Alarme, et<br>Étalonnage.                 |  |
| 5                       | Protège tous les cycles, sauf l'écran de SP du<br>niveau fonctionnement. |  |
| 6                       | Protège tous les cycles, y compris l'écran de<br>consigne.               |  |

Tableau 3 - Niveaux de protection de configuration

#### 6.1 CODE D'ACCÈS

Pour avoir accès aux cycles protégés, l'utilisateur doit saisir son **Code d'Accès**. Il pourra alors modifier la configuration des paramètres. Le code d'accès est saisi dans le champ **PR55** qui s'affiche sur le premier des cycles protégés. Sans ce code, les paramètres des cycles protégés ne peuvent qu'être affichés.

Le code d'accès est défini par l'utilisateur dans le paramètre **Password Change (PR5L)**, présent sur le cycle d'étalonnage. Le code d'accès des régulateurs est livré d'usine sur 1111.

#### 6.2 PROTECTION DU CODE D'ACCÈS

Le régulateur est muni d'un système de sécurité évitant la saisie d'innombrables tentatives de parvenir au code correct. Après la cinquième tentative erronée, le régulateur n'accepte plus de codes pendant 10 minutes.

#### 6.3 CODE D'ACCÈS MAÎTRE

En cas d'oubli du code d'accès, l'utilisateur peut utiliser le code d'accès maître pour modifier le paramètre **Password Change** (**PR5L**) et définir un nouveau code d'accès au régulateur.

Le code d'accès maître est composé des trois derniers chiffres du numéro de série du régulateur **additionnés** au numéro 9000.

Le code d'accès maître d'un appareil dont le numéro de série est 07154<u>321</u>, par exemple, sera <u>9321</u>.

Le numéro de série du régulateur peut être obtenu en appuyant sur pendant 5 secondes.

#### 7. DÉFINITION DES PARAMÈTRES PID

Pendant le réglage automatique, le processus est régulé en mode tout ou rien selon la Consigne (SP) programmée. Le réglage automatique peut prendre assez longtemps selon le processus. Il est recommandé de suivre ces étapes :

- Réglez la valeur de la consigne (SP) souhaitée pour le processus.
- Activez le réglage automatique sur l'écran RLun en sélectionnant FRSL ou FULL.

L'option **FRSL** exécute un réglage rapide alors que l'option **FULL** donne la priorité à un réglage plus précis.

Pendant le réglage automatique, l'indicateur TUNE reste allumé à l'écran. L'utilisateur doit attendre la fin du réglage pour utiliser le régulateur.

Le réglage automatique peut provoquer des oscillations de la VP autour du point de consigne dans le processus.

Si le réglage ne produit pas une régulation satisfaisante, le **Tableau 4** montre comment corriger le comportement du processus.

| PARAMÈTRE          | PROBLÈME CONSTATÉ            | SOLUTION  |
|--------------------|------------------------------|-----------|
| Bande              | Réponse lente                | Diminuer  |
| proportionnelle    | Forte variation              | Augmenter |
| Taux d'intégration | Réponse lente                | Augmenter |
|                    | Forte variation              | Diminuer  |
| Tampa dáriuá       | Réponse lente ou instabilité | Diminuer  |
| remps derive       | Forte variation              | Augmenter |

Tableau 4 - Orientation pour le réglage manuel des paramètres PID

#### 8. ENTRETIEN

#### 8.1 PROBLÈMES AVEC LE RÉGULATEUR

La plupart des problèmes d'utilisation du régulateur se doivent à des erreurs de raccordement et/ou de configuration. Une révision finale peut éviter des pertes de temps et des préjudices.

Le régulateur affiche quelques messages visant à aider l'utilisateur à identifier les problèmes.

| MESSAGE       | DESCRIPTION DU PROBLÈME                                                                        |
|---------------|------------------------------------------------------------------------------------------------|
|               | Entrée ouverte. Sans capteur ou signal.                                                        |
| Err I<br>ErrB | Problèmes de raccordement et/ou configuration.<br>Revoir les branchements et la configuration. |

#### Tableau 5 - Messages d'erreur

Les autres messages d'erreur affichées par le régulateur correspondent à des dommages internes impliquant nécessairement l'envoi de l'appareil en maintenance.

#### 8.2 ÉTALONNAGE DE L'ENTRÉE

Tous les types d'entrée du régulateur sont étalonnés dans l'usine, alors, il n'est pas recommandé le réétalonnage par des opérateurs sans expérience. Si l'étalonnage d'une entrée est nécessaire, suivez les étapes suivantes :

- 1. Configurez dans le paramètre **L'UPE** le type d'entrée à étalonner.
- 2. Programmez les limites inférieure et supérieure de la consigne pour les extrémités du type d'entrée sélectionné.
- 3. Accédez au Cycle d'Étalonnage.
- 4. Saisissez le code d'accès.
- 5. Activez l'étalonnage en choisissant YE5 dans le paramètre CRL Ib.
- À l'aide d'un simulateur de signaux électriques, appliquez à l'entrée un signal un peu près de la limite inférieure de la plage de mesurage de l'entrée configurée.
- Accédez au paramètre In.LE. Avec les touches I et A, faites l'afficheur indiquer la valeur attendue pour le signal appliqué. Ensuite appuyez sur la touche P.
- 8. Appliquez à l'entrée un signal un peu près de la limite supérieure de la plage de mesurage de l'entrée configurée.
- Accédez au paramètre In, HC. Avec les touches et al, faites l'afficheur indiquer la valeur attendue pour le signal appliqué.
- **10.** Retournez au Cycle de Fonctionnement.
- **11.** Vérifiez la qualité de l'étalonnage. Si l'étalonnage ne convient pas, répétez cette procédure.

**Note** : Lorsque les mesures sont effectuées dans le régulateur, observer si le courant d'excitation de Pt100 exigé par le calibreur utilisé est compatible avec le courant d'excitation de Pt100 utilisé dans cet appareil : 0,170 mA.

#### 8.3 ÉTALONNAGE DE LA SORTIE ANALOGIQUE

- Configurez le type de Retransmission VP dans le paramètre OUT3.
- 2. Connectez un milliampèremètre aux bornes 13 et 14 de la sortie analogique.
- 3. Entrez dans le Cycle d'Étalonnage.
- 4. Sélectionnez le paramètre RoLL.
- 5. Appuyer sur les touches ▲ et ▼ observer la valeur affichée par le milliampèremètre.
- À l'aide des touches ▲ et ▼, amener l'indication de l'afficheur du régulateur à la valeur du courant indiquée par le milliampèremètre.
- 7. Sélectionnez l'écran Ro.HE.

- 8. Appuyez sur les touches ▲ et 🛡 observez la valeur affichée par le milliampèremètre.
- À l'aide des touches ▲ et ▼, amenez l'indication de l'affichage du régulateur à la valeur du courant indiquée par le milliampèremètre.
- 10. Quittez le Cycle d'Étalonnage.
- 11. Validez l'étalonnage effectué.

#### 9. COMMUNICATION SÉRIE

Le régulateur peut être fourni avec une interface de communication série RS485 asynchrone pour une communication avec le logiciel superviseur. Le régulateur fonctionne toujours en tant qu'esclave. La communication est toujours démarrée par le maître, qui transmet une commande à l'adresse de l'esclave avec lequel il souhaite communiquer. L'esclave adressé prend la commande et envoie la réponse au maître. Le régulateur accepte également les commandes type diffusion.

#### 9.1 CARACTÉRISTIQUES

- Signaux compatibles avec la norme RS485. Protocole MODBUS (RTU). Raccordement à deux fils entre 1 maître et jusqu'à 31 instruments (pouvant adresser jusqu'à 247) en topologie de bus.
- Les signaux de communication sont isolés électriquement des bornes d'entrée (INPUT) et d'alimentation (POWER). <u>Ils ne sont</u> pas isolés du circuit de retransmission et de la source de tension auxiliaire, quand disponibles.
- Distance maximale de raccordement : 1 000 mètres.
- Temps de déconnexion : 2 ms maximum après le dernier octet.
- Vitesse sélectionnable : 1 200 à 115 200 bps.
- Nombre de bits de données : 8.
- Parité paire, impaire ou sans parité.
- Nombre de bits d'arrêt : 1.
- Temps de démarrage de la transmission de réponse : 100 ms maximum après recevoir la commande.

Les signaux RS485 sont :

| D1  | D | D + | В | Ligne de données bidirectionnelle. Borne 15  |          |
|-----|---|-----|---|----------------------------------------------|----------|
| D0  | D | D - | A | Ligne de données bidirectionnel<br>inversée. | Borne 16 |
| C   |   |     |   | Branchement optionnel qui améliore           | Borne 17 |
| GND |   |     |   | communication.                               |          |

Tableau 6 – RS485

#### 9.2 CONFIGURATION DES PARAMÈTRES DE COMMUNICATION SÉRIE

Deux paramètres doivent être configurés pour utiliser la communication série :

- **bRud** : Vitesse de communication.
- **PrLY** : Parité de la communication.
- Rddr : Adresse de communication du régulateur.

#### 9.3 PROTOCOLE DE COMMUNICATION

Le protocole MODBUS RTU esclave est accepté. Tous les paramètres configurables sont accessibles en lecture ou en écriture via le port de communication série. Les commandes de diffusion sont également prises en charge (adresse **0**).

Les commandes Modbus disponibles sont :

- 03 Read Holding Register
- 05 Force Single Coil
- 06 Preset Single Register

#### 9.4 TABLEAU RÉSUMÉ DES REGISTRES TYPE HOLDING REGISTER

Les registres les plus utilisés sont présentés ci-dessous. Pour une documentation complète, téléchargez le **Tableau de registres pour la communication série** dans la section **N1040** de notre site Web : <u>www.novusautomation.com</u>.

Tous les registres sont de type entier 16 bits avec signal.

| ADRESSE | PARAMETRE | DESCRIPTION DE L'ENREGISTREUR                                                                                                                                                                                                                                                                                                                                                                              |
|---------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0000    | SP actif  | Lecture : Consigne de régulation active (de<br>l'écran principal, des rampes et paliers ou<br>de la consigne déportée).<br>Écriture : Consigne de régulation sur<br>l'écran principal.<br>Plage maximale : <b>SPLL</b> jusqu'à la valeur<br>définie dans <b>SPHL</b> .                                                                                                                                     |
| 0001    | VP        | Lecture : Variable de processus.<br>Écriture : Interdit.<br>Portée maximale : Le minimum est la<br>valeur définie dans <b>SPLL</b> et le maximum<br>est la valeur définie dans <b>SPHL</b> et la<br>position de la décimale dépend de l'écran<br><b>dPPo</b> .<br>Dans le cas de la lecture de la température,<br>la valeur sera toujours multipliée par 10,<br>quelle que soit la valeur de <b>dPPo</b> . |
| 0002    | MV        | Lecture : Puissance de sortie active<br>(manuelle ou automatique).<br>Écriture : Interdit. Voir l'adresse 29.<br>Plage : 0 à 1000 (0.0 à 100.0 %).                                                                                                                                                                                                                                                         |

Tableau 7 - Tableau d'enregistreurs

#### 10. IDENTIFICATION

| N1040 -                   | Α- | В- | С |  |  |
|---------------------------|----|----|---|--|--|
| A · Sortios disponibles · |    |    |   |  |  |

A: Sorties disponibles :

| PR : | OUT1 = Impulsion / OUT2 = Relais |  |
|------|----------------------------------|--|
|      |                                  |  |

PRRR : OUT1 = Impulsion / OUT2 = OUT3 = OUT4 = Relais

. . . . . . . . .

- PRAR: OUT1 = Impulsion / OUT2 = Relais / OUT3 = 0-20 / 4-20 mA
- OUT4 = Relais
- B: Communication série : Rien
- affiché : (version de base, sans communication série)
- 485: (version avec série RS485, protocole Modbus)

C: Alimentation :

| Rien      |                                     |
|-----------|-------------------------------------|
| affiché : | 100~240 Vca / 48~240 Vcc ; 50~60 Hz |
| 24.14     | Modèle 24 V                         |
| Z4 V :    |                                     |

12~24 Vcc / 24 Vca ; 50~60 Hz

# 11. SPÉCIFICATIONS

| Découpe du panneau :                                                                                                |                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Poids approximatif :                                                                                                |                                                                                                                           |
| ALIMENTATION :                                                                                                      | J. J                                                                                  |
| Modèle standard :                                                                                                   |                                                                                                                           |
| Modèle 24 V ·                                                                                                       | 12 à 24 Vcc / 24 Vca (-10 % / +20 %)                                                                                      |
| Consommation maximale                                                                                               | 6 V/A                                                                                                                     |
| CONDITIONS ENVIRONNEM                                                                                               |                                                                                                                           |
| Température de fonctionne                                                                                           | ement: 0 à 50 °C                                                                                                          |
| Humidité relative ·                                                                                                 | 80 % @ 30 °C                                                                                                              |
| Pour des températures su                                                                                            | périeures à 30 °C, réduire 3 % par °C                                                                                     |
| Usage interne · catégorie                                                                                           | d'installation II degré de pollution 2 :                                                                                  |
| altitude < 2000 mètres                                                                                              | a motanation n, adgre de ponation 2,                                                                                      |
| ENTRÉE Thermocouple                                                                                                 | s J ; K ; T et Pt100 (selon Tableau 01)                                                                                   |
| Résolution interne :                                                                                                |                                                                                                                           |
| Résolution de l'afficheur : .                                                                                       | 12000 niveaux (de -1999 à 9999)                                                                                           |
| Taux de lecture de l'entrée                                                                                         | e:jusqu'à 10 par seconde (*)                                                                                              |
| Exactitude : . Thermocoup                                                                                           | les <b>J</b> , <b>K</b> , <b>T</b> : 0,25 % du <i>span</i> ±1 °C (**)                                                     |
|                                                                                                                     | Pt100 : 0,2 % du span                                                                                                     |
| Impédance d'entrée :                                                                                                | Pt100 et thermocouples : > 10 M $\Omega$                                                                                  |
| Mesure du Pt100 :                                                                                                   | Type 3 fils. ( $\alpha = 0.00385$ )                                                                                       |
| Avec compensation de lo                                                                                             | ngueur de câble, courant d'excitation                                                                                     |
| Tous les types d'entrée s<br>selon la norme NBR 1277                                                                | ont calibrés en usine. Thermocouples<br>1/99 : Pt100 NBR 13773/97.                                                        |
| (*) Valeur adoptée lorsque<br>réglé sur la valeur 0 (zéro<br>autres que 0, la valeur c<br>échantillons par seconde. | e le paramètre de filtre numérique est<br>). Pour des valeurs de filtre numérique<br>lu taux de Lecture d'entrée est de 5 |
| (**) L'utilisation des therr<br>temps minimal pour la stat                                                          | nocouples demande un intervalle de<br>pilisation de 15 minutes                                                            |
| SORTIES (OUT) :                                                                                                     |                                                                                                                           |
|                                                                                                                     | mpulsion de tension 5 V / 50 mA max                                                                                       |
| OUT2 ·                                                                                                              | relais SPST : 1 5 A / 240 Vca / 30 Vcc                                                                                    |
| OUT3 (PRRR) ·                                                                                                       | Relais SPST: 1 5 A / 240 Vca / 30 Vcc                                                                                     |
|                                                                                                                     | 0-20 mA ou 4-20 mA                                                                                                        |
|                                                                                                                     | 500 Ohms may : 12000 niveaux: Isoláe                                                                                      |
|                                                                                                                     | Précision de $0.25\%$ E S (***)                                                                                           |
| ошт <i>и</i> :                                                                                                      | Bolais SPDT: 3 A / 240 Voa / 30 Voa                                                                                       |
|                                                                                                                     | IDEE polycosthemate (DC) III 04 V 2                                                                                       |
|                                                                                                                     |                                                                                                                           |
|                                                                                                                     | IP20, ABS+PC 0L94 V-0                                                                                                     |
|                                                                                                                     | AGNE HQUE : EN 61326-1:1997                                                                                               |
| et EN 61326-1/A1:1998                                                                                               |                                                                                                                           |
|                                                                                                                     | CISPR11/EN55011                                                                                                           |
|                                                                                                                     | 1000-4-2, EN61000-4-3, EN61000-4-4,                                                                                       |
| EN61000-4-5, EN61000-4-6, E                                                                                         | N61000-4-8 et EN61000-4-11                                                                                                |
| SECURITE : El                                                                                                       | N61010-1:1993 et EN61010-1/A2:1995                                                                                        |
| RACCORDEMENTS PROPRE                                                                                                | S POUR COSSES TYPE BROCHE.                                                                                                |
| CYCLE DE MLI PROGRAMM                                                                                               | ABLE : de 0.5 à 100 secondes.                                                                                             |
| DEMARRER L'OPÉRATION :                                                                                              | après 3 secondes sous tension.                                                                                            |
| CERTIFICATIONS: CE, UKCA                                                                                            | et UL.                                                                                                                    |
| (***) F.S.= Full scale. Plage ma                                                                                    | aximale du capteur utilisé.                                                                                               |

Les conditions de garantie se trouvent sur notre site Web www.thermoest.com